Multifactorial Disease Detection Using Regressive Multi-Array Deep Neural Classifier
نویسندگان
چکیده
منابع مشابه
Holistic Interstitial Lung Disease Detection using Deep Convolutional Neural Networks: Multi-label Learning and Unordered Pooling
Accurately predicting and detecting interstitial lung disease (ILD) patterns given any computed tomography (CT) slice without any pre-processing prerequisites, such as manually delineated regions of interest (ROIs), is a clinically desirable, yet challenging goal. The majority of existing work relies on manuallyprovided ILD ROIs to extract sampled 2D image patches from CT slices and, from there...
متن کاملneural classifier ensemble using error-correcting output codes: access control application
abstract biometric access control is an automatic system that intelligently provides the access of special actions to predefined individuals. it may use one or more unique features of humans, like fingerprint, iris, gesture, 2d and 3d face images. 2d face image is one of the important features with useful and reliable information for recognition of individuals and systems based on this ...
Tweet Sarcasm Detection Using Deep Neural Network
Sarcasm detection has been modeled as a binary document classification task, with rich features being defined manually over input documents. Traditional models employ discrete manual features to address the task, with much research effect being devoted to the design of effective feature templates. We investigate the use of neural network for tweet sarcasm detection, and compare the effects of t...
متن کاملImproved Microaneurysm Detection using Deep Neural Networks
In this work, we propose a novel microaneurysm (MA) detection for early dieabetic ratinopathy screening using color fundus images. Since MA usually the first lesions to appear as a indicator of diabetic retinopathy, accurate detection of MA is necessary for treatment. Each pixel of the image is classified as either MA or non-MA using deep neural network with dropout training procedure using max...
متن کاملDetection of difficult calvings in dairy cows using neural classifier
In this study, the detection of dairy cows with difficult calvings using artificial neural networks (ANN) and classification functions (CF) is presented. The set of 15 classification variables was used. The dependent variable was the class of calving difficulty: difficult or easy. Perceptrons with one (MLP1) and two (MLP2) hidden layers as well as radial basis function (RBF) networks were analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Automation & Soft Computing
سال: 2021
ISSN: 1079-8587
DOI: 10.32604/iasc.2021.015205